
Counting Fluent Temporal Logic
Technical Report

In this technical report we aim to describe the details of the proposed model
checking algorithm for Counting Fluent Temporal Logic.

Motivating Example

We will start to motivate our work in this paper with the Single Lane Bridge
Problem (SLB), a modelling problem introduced in [6] (cf. Section 7.2 therein).
The problem consists of a narrow bridge which only allows for a single lane of
traffic, which must be appropriately controlled to avoid safety violations. As one
may expect, a safety violation occurs if two cars moving in different directions
are on the bridge at the same time. In order to simplify the presentation of the
problem, cars moving in different directions are represented by different colours;
more precisely, red cars will move in one direction, while blue cars will move in
the opposite one. The following FSP model is a specification of this problem.

const N = 4 // number of each type of car
range T = 0..N // type of car count
range ID = 1..N // car identities

BRIDGE = BRIDGE[0][0], //initially empty
BRIDGE[nr:T][nb:T] = //nr is the red count, nb the blue count

(when (nb==0) red[ID].enter ->BRIDGE[nr+1][nb]
| red[ID].exit -> BRIDGE[nr-1][nb]
|when (nr==0) blue[ID].enter ->BRIDGE[nr][nb+1]
| blue[ID].exit ->BRIDGE[nr][nb-1]).

NOPASS1 = C[1], C[i:ID] = ([i].enter ->C[i%N+1]).
NOPASS2 = C[1], C[i:ID] = ([i].exit -> C[i%N+1]).
CAR = (enter->exit->CAR). //car definition
||CONVOY = ([ID]:CAR || NOPASS1 || NOPASS2).
||CARS = (red:CONVOY || blue:CONVOY).
||SingleLaneBridge = (CARS || BRIDGE).

In this model, the CAR process specifies a simplified behaviour of a car with
respect to the bridge. Process BRIDGE is essentially what controls the access to
the bridge: it prevents cars in one direction entering the bridge when cars in the
opposite direction are already on the bridge. The NOPASS processes strengthen
the model, avoiding cars to pass over on the bridge. Finally, the system is
modelled as the composition of the BRIDGE process with the instances of cars
specified by means of processes CONVOY and CARS.

The safety property associated with this model requires expressing that it
should never be the case that red and blue cars are on the bridge at the same
time. To specify this property, as put forward in [6], we need to express whether
there is at least one car of each colour on the bridge. Following the solution
presented in [6, Subsection 14.2.1], we take advantage of the cars identifiers
(ID) and define one fluent per car, namely RED[ID] and BLUE[ID], to indicate
whether the corresponding car is on the bridge or not. That is, for instance
for red cars, we have RED[i:ID]=<red[i].enter, red[i].exit>. Then, the
required safety property is specified as follows:

ONEWAY = 2¬((RED[1] ∨ RED[2] ∨ . . . ∨ RED[N])∧

(BLUE[1] ∨ BLUE[2] ∨ . . . ∨ BLUE[N]))

Notice how, in this case, we are capturing the fact that there is more than
one car of a given colour on the bridge through a (parameterised) disjunction,

1

whose size depends on the number of cars allowed in each direction (often, a
parameter of a bounded model abstraction of a real world situation). We will
come back to this property below.

To continue our motivating example, let us suppose that we have to impose
an additional constraint on the bridge model. Besides the fact that, due to
the bridge’s width, cars circulating in different directions must be forbidden,
assume that the bridge has a maximum weight capacity. Exceeding this capac-
ity is dangerous, so the maximum number of cars on the bridge must also be
controlled. Notice that, although this restriction was not part of the original
model, such a constraint is common in these kinds of models (see, for instance,
the Ornamental Garden, Bounded Buffers, Producers-Consumers, and Readers
and Writers, from [6]). The controller for the bridge must now forbid new cars
entering the bridge when the maximum capacity is met, which can be achieved
as follows:

const C = 3 // maximum capacity of the bridge
BRIDGE = BRIDGE[0][0], //initially empty
BRIDGE[nr:T][nb:T] = //nr is the red count, nb the blue count
(when ((nb==0)&&(nr<=C)) red[ID].enter ->BRIDGE[nr+1][nb]
| red[ID].exit -> BRIDGE[nr-1][nb]
|when ((nr==0)&&(nb<=C)) blue[ID].enter ->BRIDGE[nr][nb+1]
| blue[ID].exit -> BRIDGE[nr][nb-1]).

...

Now we would like to express the fact that this controller ensures the bridge’s
safety, i.e., that the number of cars on the bridge never exceeds the bridge’s ca-
pacity. We may take advantage of the previously introduced fluents that capture
the fact that a particular car is on the bridge to attempt to capture this prop-
erty. But, as the reader may realise, this property is more difficult to specify,
since the number of possible scenarios to consider, taking into account that all
interleavings of entering and leaving events have to be considered, is in principle
infinite. Nevertheless, assuming that the previously specified ONEWAY prop-
erty holds, we can specify the bridge’s weight safety as the following property
CAPACITY SAFE :

CAPACITY SAFE = 2¬((RED[1] ∧ RED[2] ∧ RED[3])∨

(RED[1] ∧ RED[2] ∧ RED[4])∨

(RED[1] ∧ RED[3] ∧ RED[4])∨

(RED[2] ∧ RED[3] ∧ RED[4])∨

(BLUE[1] ∧ BLUE[2] ∧ BLUE[3])∨

(BLUE[1] ∧ BLUE[2] ∧ BLUE[4])∨

(BLUE[1] ∧ BLUE[3] ∧ BLUE[4])∨

(BLUE[2] ∧ BLUE[3] ∧ BLUE[4]))

As the reader may notice, this formula grows quickly as the number of cars
and the bridge capacity are increased. More precisely, the number of disjunc-
tions in this formula is in this case

(
4
3

)
+

(
4
3

)
= 8, the sum of the combinatorial

numbers between the size of each convoy and the bridge’s capacity. Notice
that, even for small models, this kind of property, clearly related to the need of
“counting” (cars on the bridge, in this case) in FLTL, can become tricky and
complicated.

To address these problems, we propose to introduce the concept of counting
fluent. Suppose that we have the possibility of defining numerical values, that
enumerate event occurrences. For instance, CARS ON BRIDGE may be a nu-
merical value that keeps count of the number of cars (red or blue) on the bridge.

2

This value is initially 0, is incremented at each occurrence of an enter event, and
is decremented at each occurrence of an exit event. Using CARS ON BRIDGE,
we can express the weight safety property of the bridge in a more natural way,
as follows:

CAPACITY SAFE = 2(CARS ON BRIDGE < capacity + 1)

Now let us go back to the ONEWAY property. Assuming the definition of
numerical values RED CARS ON BRIDGE and BLUE CARS ON BRIDGE,
that keep count of the red and blue cars on the bridge, respectively, this property
can be specified as follows:

2¬(RED CARS ON BRIDGE > 0 ∧ BLUE CARS ON BRIDGE > 0)

Our motivating example illustrates two issues. First, it shows that situa-
tions in which “counting” events is useful are common. Second, although some
properties related to the number of times certain events occur (or are allowed
to occur) may be expressed in LTL or FLTL, their specification can be cum-
bersome. The reader familiar with the formalisms used in this section may be
aware that, in some cases, one can simplify the specification of a property by
introducing in the model some property related elements (e.g., events that are
only enabled when a safety property is violated), and resorting to these elements
in the expression of the property. This is a common workaround that, we be-
lieve, should be avoided whenever possible, since it mixes the actual model with
property related elements, making it harder to understand, and is less declara-
tive, i.e., reasoning about the property’s meaning requires dealing both with an
operational part (that incorporated in the model) and a declarative part (that
expressed in the logic).

As we will discuss later on, incorporating counting fluents is not a mere
syntactic sugar on fluent linear temporal logic. In fact, the resulting logic is
strictly more expressive than FLTL. Its associated advantages are to ease the
specification of properties that involve counting events in some way (as we have
shown in this section), even enabling us to express some properties not express-
ible in FLTL; and allowing for a cleaner separation of concerns between models
and properties, as we will discuss in our validation Section. This has a poten-
tially positive impact on understandability, especially taking into account some
modern approaches to system description that involve operational component
specifications, and constraints on their concurrent interactions.

Counting Fluent LTL

To describe more naturally properties of reactive systems in which enumerat-
ing the occurrences of certain events is relevant, we introduce Counting fluent
temporal logic (CFLTL), an extension of fluent linear temporal logic [3], which
complements the notion of fluent by the related concept of counting fluent.
Similarly to fluents, counting fluents represent abstract states in event-based
systems whose values depend on the execution of events. But, as opposed to

3

fluents, which are logical propositions, counting fluents are numerical values
associated with event occurrences.

Formally, a counting fluent cF l is a 4-tuple defined by three sets (pairwise
disjoint) of events and an initial numerical value, as follows:

cF l ≡ 〈I,D,R〉 initially N

Set I is the incrementing set of cF l, i.e., when an event of this set is executed,
the value of cF l is incremented by one. On the other hand, D represents the
decrementing set of cF l, and in this case the value of cF l is decremented when
one of these events occurs. Finally, R is the resetting events set, whose execution
changes the value of cF l to its initial value N .

Counting expressions are logical expressions that relate counting fluents,
necessary to deal with their numerical nature. They can be combined with
logical and temporal operators to specify CFLTL formulas. For instance, a
counting expression can compare the values of two of counting fluents, or query
for the value of a particular counting fluent. Formally, given a set Ψ of counting
fluents and cF l1, cF l2 ∈ Ψ, a valid counting expression φ is defined as follows:

φ ::= cF l1 ∼ c | cF l1 ∼ cF l2 | cF l1 ∼ cF l2 ± c
s.t., c ∈ N and ∼∈ {=, >,<}.

Expressions that involve just one counting fluent are called unary expressions,
while the others are called binary expressions. Notice that counting expressions
are boolean valued, they predicate on the values of counting fluents at some
point. Thus, counting expressions can be used as base cases for formulas. We
define the set of well-formed CFLTL formulas as follows:

(1) every counting expression φ is a CFLTL formula;

(2) every propositional fluent f is a CFLTL formula; and

(3) if ϕ1 and ϕ2 are CFLTL formulas, then so are ¬ϕ1, ϕ1 ∨ψ2, ϕ1 ∧ψ2, ©ϕ1,
ϕ1Uϕ2, and the usual derived definitions for 2ϕ1 and 3ϕ1.

In order to interpret CFLTL formulas, first we introduce an interpretation
for counting fluents. Let Ψ be a set of counting fluents. An interpretation for
Ψ is an infinite sequence over NΨ, that for each instant of time, assigns a value
for each counting fluent. Given an infinite trace w = a1, a2, . . ., we define the
function Vi,w(cF l), that denotes the value of the counting fluent cF l ∈ Ψ at
position i ∈ N, as follows:

Vi,w(cF l) =

N if i = 0

N + (#r≤k≤iai ∈ I)− (#r≤k≤iai ∈ D) if i > 0

where r is the maximum l, with 0 ≤ l ≤ i, such that al ∈ R, or 0, if ∀l :
0 ≤ l ≤ i : al 6∈ R. Function Vi,w assigns to each fluent cF l its initial value
at the beginning of the execution, and the value at any other instant of time
is obtained by adding to its initial value the number of occurrences (from its
last resetting event occurrence) of its incrementing events, and subtracting the
number of decrementing events. Notice that, similar to propositional fluents,

4

our counting fluents are close on the left and open on the right, since their
values are updated immediately when a relevant event is executed.

We consider the usual FLTL interpretation for propositional fluents, logical
and temporal operators [3]. Then, to obtain a complete interpretation of CFLTL
formulas, we define the semantics for the counting expressions as follows:

• w, i |= cF l ∼ c⇔ Vi,w(cF l) ∼ c

• w, i |= cF l1 ∼ cF l2 ⇔ Vi,w(cF l1) ∼ Vi,w(cF l2)

• w, i |= cF l1 ∼ cF l2 ± c⇔ Vi,w(cF l1) ∼ Vi,w(cF l2)± c

where c ∈ N, ∼∈ {=, >,<} and the symbols ∼, + and − of the right hand side
represent the corresponding relation or operation on natural numbers. Notice
that the expression cF l1 ∼ cF l2 can be defined as a particular instance of the
expression cF l1 ∼ cF l2 ± 0.

CFLTL vs. LTL

Let us compare CFLTL and LTL, in terms of expressiveness and decidability. It
is well known that the expressive power of LTL is equivalent to that of counter-
free Büchi Automata [2]. Intuitively, an automaton is counter-free if it cannot
express, for instance, if a symbol ‘a’ is repeated N times in an infinite sequence.
CFLTL then results to be strictly more expressive than LTL, since such “count-
ing” property can straightforwardly be specified in CFLTL, by using a counting
fluent that counts the number of ‘a’s. Regarding decidability, in [4] it is proven
that, if LTL is extended with diagonal constraints, i.e., expressions of the form
]ϕ1 −]ϕ2 ∼ k, then it becomes undecidable. This kind of properties are also
directly expressible in CFLTL, turning it into an undecidable logic. In the next
section we develop a sound but incomplete model checking approach for CFLTL,
which shows that our greater expressive power does not make us fully sacrifice
automated analysability.

A Model Checking approach for CFLTL

CFLTL may be suitable to express properties of reactive systems. However,
its adoption would be seriously affected by the lack of analysis mechanisms for
the logic. Model checking [1] provides an automated method for determining
whether or not a property holds on the system’s state graph, that is available
for FLTL. We study in this section how to perform model checking of CFLTL
properties over systems described via LTSs, as is the case of FLTL model check-
ing [3]. At this point, the undecidability of CFLTL leaves us with two choices.
We can search for a decidable fragment of CFLTL, or we can keep the full ex-
pressive power of CFLTL, and try to define an inherently incomplete (due to
the logic’s undecidability) model checking mechanism for the logic. We follow
the latter in this section.

In order to be able to define a model checking procedure, it is important
to guarantee finiteness of the model and properties being analysed. Compared
to FLTL, our only potential source of unboundness may come from counting
fluents. In order to keep counting fluents bounded, we propose restricting them
with bounds and scopes, two kinds of numerical limits to counting fluents, which

5

we describe in detail below. Given the limits to the counting fluents, our ap-
proach is based on the definition of a process that monitors the occurrence of
the events that update the states of the counting fluents present in the property
being analysed. A monitor process activates propositional fluents that capture
the truth value of the fluent expressions of the properties formulas, when rele-
vant events occur. Finally, CFLTL formulas are encoded as FLTL formulas, by
replacing the counting expressions with corresponding propositional fluents and
considering states in which monitors are updating fluent values as unobservable.

The described approach to CFLTL model checking allows us to verify prop-
erties containing counting expressions using LTSA [6]. Labelled Transition Sys-
tem Analyser (LTSA) is a verification tool for concurrent systems models. A
system in LTSA is modelled as a set of interacting finite state machines. LTSA
supports Finite State Process notation (FSP) for concise description of com-
ponent behaviour, and directly supports FLTL verification by model checking.
Syntactically, we propose counting fluents to be defined via the following syntax
(extending LTSA’s syntax for propositional fluents):

〈CFluentDef〉 ::=
‘ cfluent’ 〈fluent name〉 〈fluent bounds〉 ‘=’

‘<’〈incremental events set〉 ‘,’ 〈decremental events set 〉 ‘ , ’
〈reset events set 〉 ‘>’ ‘initially’ 〈initial value 〉

〈fluent bounds〉 ::=
(‘[’ | ‘ (’) 〈min value〉 ‘..’ 〈max value〉 (‘]’ | ‘)’)

where brackets and parentheses are used to indicate the kind of limit, bound
and scope, respectively, on the corresponding counting fluent.

Bounds and Scopes

A bound is a limit that arises as part of modelling, and comes from an actual
constraint on the system being specified. For instance, suppose that we are
modelling a mobile phone whose volume is restricted to be at most max. Re-
lating this value to events, clearly once max is reached, further presses on the
“increase volume” button have no effect on the volume, and therefore can be
ignored (at least regarding what concerns the behaviour of the mobile phone).
A counting fluent associated with increasing the volume can then be restricted
by max as its largest possible value.

Unbounded counting fluents, on the other hand, must be limited by scopes, to
maintain the analysis being fully automated. As an example of an unbounded
counting fluent, that will have to be limited by a scope, consider the TCP
network protocol. Over this protocol specification, an interesting property to
check is that the sender can be waiting at most for MAX acks. Using CFLTL
we can specify this property as follows:

ACK ≡ 〈{PACKs.send}, {PACKs.ack}, {}〉 initially 0 ACK less MAX = 2(ACK ≤MAX)

Notice that ACK may be not bounded in a model an a violation to ACK less MAX
could be found. As opposed to the case of bounds, which are part of the model,
scopes are necessary due to analysis reasons.

When a lower (resp. upper) bound is reached, decrementing (resp. incre-
menting) events are ignored, i.e., the value of the counting fluent remains the

6

same. When a lower (resp. upper) scope is reached, analysis becomes inconclu-
sive. That is, exceeding a scope during analysis corresponds to reaching fluent
overflow states, and thus from models with reachable “overflowed” states noth-
ing can be inferred, neither the validity of the property, nor the construction of
a counterexample.

Model Checking

Let Sys and φ be a FSP specification of a system and a CFLTL property, re-
spectively, and suppose that φ contains fluent expressions ε1, . . . , εn that refer to
counting fluents cF l1, cF l2, . . . , cF lm. In order to perform the verification pro-
cess using LTSA, our approach generates a new FSP process Sys’ and a FLTL
formula φ′, such that Sys’ incorporates the monitor process that updates the
values of the counting fluents and φ′ encodes the propositional fluents associ-
ated to each counting expression. The construction of Sys’ and φ′ ensures that
every counterexample for φ′ in Sys’ is a counterexample for φ in Sys. Formally,
Sys′ 6|=FLTL φ

′ ⇒ Sys 6|=CFLTL φ. Below, we describe our approach, consisting
of constructing the monitor and the encoded formula φ′.

Monitors for Counting Fluents

Sys’ is obtained by the parallel composition of the system Sys, the monitor
process CFMon and a synchroniser process SYNCH. SYNCH is a scheduler process
that avoids the interleaving between the events of the system and the updating
monitor events, as depicted in the Fig. 1.

The specification of SYNCH is shown in Fig. 2, where Evs is the set of all
system events, MonEvs is the set of all event of Sys which are monitored, CfEvs
is the set of updating events of the CFmon process, and ok is an event of the
monitor that indicates that the updating process has been completed.

eEvs

System

eEvs

Monitor

ok

eCfEvs

Figure 1: Behavioural view of Sys’.

SYNCH = ({Evs\MonEvs} ->SYNCH | MonEvs ->CFSYNCH),
CFSYNCH = (CfEvs ->CFSYNCH | ok ->SYNCH).

Figure 2: FSP spec. for SYNCH.

Intuitively, a monitor keeps track of the values of the counting fluents (within
its bounds/scopes) that appear in a counting expression. In the case of a unary
expression cF l ∼ c, the monitor records the value of counting fluent cF l, and for
binary expressions (cF l1 ∼ cF l2±c), the monitor records the values of counting
fluents cF l1 and cFL2.

7

To achieve this, the monitor process records the counting fluent values by
means of parameters, one per counting fluent cF l1, . . . , cF lm. Then, each pa-
rameter is initialised with the initial value of the corresponding counting fluent:
CFmon = CFmonB [I1] . . . [Im]. Process CFmon monitors the occurrence of system
events involved in the definition of the counting fluents, and triggers particular
events that update the values of the counting expressions.

First, consider the case in which the parameters values are not in a boundary
situation, i.e. they are strictly within their limits (lower and upper bounds/s-
copes). Given values v1, . . . , vm that represent a valid state of the CFmon process,
we generate a process case for each monitored event e, as follows:

| when (γ) e ->ε1[v′ε1] ->ε2[v′ε2] ->. . . ->εn[v′εn] ->ok ->CFmon_B [v′1] . . . [v′m]

The guard γ ensures the values are not in a boundary situation. When the
monitored event e occurs, then the monitor process triggers n events (εi[vεi]) to
update the values of each counting expression ε1, . . . , εn.

In case of an unary expression (e.g., ε = cF l ∼ c), the triggered event has
the form ε[v′cF l], where v′cF l is the value of the counting fluent associated to ε.
For a binary expression (e.g., ε = cF li ∼ cF lj ± c), the value of the triggered
event represents the difference between the counting fluents values related in
the expression, i.e., ε[v′cF li − v

′
cF lj

]. As detailed below, these events are used
in the definition of the propositional fluents that hold the truth values for each
counting expression.

The new values for v′1 . . . v
′
m, the parameters of the monitor, are calculated

in terms of the membership of the event e to the incremental, decremental or
reset event sets of the corresponding counting fluent definitions.

Consider now the case where some parameter is in a boundary situation, i.e.,
one of v1, . . . , vm reaches its lower (upper) limit. Then, for each expression εi
and decremental (incremental) event e of it, we generate a process case for one
of the two possibilities depending on the kind of limit. If the limit is a scope,
we trigger the fluent overflow event; otherwise, i.e., the limit is a bound, we
simply maintain the expression value on its lower (upper) bound.

Note that for every event of the original system considered, the monitor
process has cases whose condition guards’ disjunction is always true, i.e., we
consider all possibilities for them. This situation, and extending the alphabet’s
with the rest of events not considered for fluent value update, ensures that the
process is non-blocking with respect to the original system behaviour Sys.

In order to illustrate a monitor process generated by our model checking
approach, let us consider the specification of the SLB problem presented pre-
viously, and the SAFE CAPACITY property to be verified. We define the
counting fluent CARS ON BRIDGE as follows:

cfluent CARS_ON_BRIDGE [0..C+2) =
< { red[ID].enter,blue[ID].enter },
{ red[ID].exit,blue[ID].exit }, {} > initially 0

where C is the constant representing the capacity of the bridge. The monitor
process generated for the formula is the following:

CFmon = CFmon_B[0],
CFmon_B[i:0..C+2] =
(when (i<C+2) {red[ID].enter,blue[ID].enter}

-> carsOnBridge[i+1] ->ok -> CFmon_B[i+1]
| when (i>=C+2) {red[ID].enter,blue[ID].enter}

-> fluent_overflow ->ok -> CFmon_B[C+2]

8

| when (i>0) {red[ID].exit,blue[ID].exit}
-> carsOnBridge[i-1] ->ok -> CFmon_B[i-1]

| when (i<=0) {red[ID].exit,blue[ID].exit}
-> carsOnBridge[i] ->ok -> CFmon_B[0]).

Encoding CFLTL formulas

In order to verify an CFLTL formula φ using LTSA, we encode it as an FLTL
formula φ′ which captures the truth values of the counting fluent expressions
with propositional fluents. Thus, we define fluents fl1, . . . , f ln, one per counting
expression, such that, if εi holds at a position, then so does fli.

The form of the counting expression εi (i.e., unary or binary) determines the
sets of events that define the propositional fluent fli.

• If εi = cF l ∼ c, then the propositional fluent that captures the truth value
of the expression is the following: fli ≡ 〈εi[∼ c], εi[� c]〉, where εi[∼ c]
is the set of events of εi satisfying the relation ∼ c under bounds lεi and
uεi . For instance, for the relation ≤ 2 under 0 and 3 as lower and upper
bounds, respectively, εi[≤ 2] is the set {εi[0], εi[1], εi[2]}.

• In case of binary expressions, i.e., εi = cF l1 ∼ cF l2±c = cF l1−cF l2 ∼ ±c,
the generated fluent has the form: fli ≡ 〈εi[∼ 0±c], εi[� 0±c]〉. Note that,
in these cases, the equality of two fluents is captured by the event εi[0],
so the relations can be obtained by analysing the events that express the
monitored difference. As an example, if εi is the expression cF l1 ≤ cF l2+1
under bounds −2 and 2, the set of events that enable the fluent fli is
{εi[−2], εi[−1], εi[0], εi[1]}.

• Finally, the initial value for fli is true if the counting expression εi holds
with the initial counting fluent values, and false otherwise.

Notice that there exist some states in Sys’ in which φ′ must not be evalu-
ated, i.e., when the monitor is updating the counting expression values or a fluent
overflow state has been reached. To avoid the analysis on these states, we define
the notion of observable states as those that satisfy OBS ≡ OK ∧ ¬F overflow,
where the fluent F overflow indicates that a counting fluent has been over-
flowed. With this notion, the last step of the construction of φ′ is based on
the translation introduced in [5, Subsection 5.3] to guarantee the exclusion of
the non-observable states in the analysis of the validity of φ in a model. For
instance, if φ = []ϕ, then φ′ = [](OBS→ ϕ).

Following with the SLB example, we can now encode the CFLTL formula
SAFE CAPACITY (where C instantiated with value 2) as follows:

fluent CARS_ON_BRIDGE_L_3 = <carsOnBridge[0..2],
carsOnBridge[3..4]> initially True

fluent OK =<ok,MonEvs> initially True
assert SAFE_CAPACITY=[]((OK &&!F_overflow)->CARS_ON_BRIDGE_L_3)

Verification

Suppose that the encoded formula φ′ was successfully verified over system Sys’,
i.e., no counterexample was found within the user provided limits for count-
ing fluents. Then, our approach proceeds to check if Sys’ can reach an over-
flowed state, analysing the formula REACH OVERFLOW = [](!F overflow). If

9

REACH OVERFLOW is verified over Sys’, i.e., the event fluent overflow is never
executed, then the scopes are big enough to cover the whole state space of the
system, so no counterexample of φ′ exists. That is, our approach guarantees in
this case the validity of property φ in Sys, and returns yes to the verification
problem. On the other hand, if an overflowed state is reached, our approach
answers maybe indicating that no counterexamples were found in the state space
explored, but such space is not the whole state space of the system (a fluent
overflow is reachable). This situation may be solved by increasing the scope.

Lemmas

Our model checking approach is supported by the following lemmas. Given a
set of events Evs and A ⊂ Evs, let us denote by |A the reduction function such
that, given a trace σ over Evs, σ |A returns the trace obtained by ignoring
the occurrences of events e ∈ A in σ. Moreover, let ΓSys and ΓSys’ be the
sets of execution traces of the LTS of processes Sys and Sys’, respectively.
Consider that set CFset = CfEvs ∪ {ok} ∪ {fluent overflow} contains all
events performed by the monitor CFmon. Then, the following lemmas hold.

Lemma 1 For every σ ∈ ΓSys, there is a σ′ ∈ ΓSys’ such that σ = σ′|CFset
.

Proof Let σ = e1 → . . . → en be a trace in ΓSys, in order to show that exist
some σ′ ∈ ΓSys’ such that σ = σ′|CFset

, consider the following two cases:

• if there is no monitored event executed in σ, i.e. every ei /∈ MonEvs,
then the existence of σ′ = σ is inmediate due to the no interference (syn-
chronisation) of CFmon, the SYNCH definition and the parallel composition
properties.

• Now, for every ei → ei+1 sub-trace of σ, where ei ∈ MonEvs, there is a
sub-trace

ei → ε1[v′ε1]→ . . .→ εk[v′εk][→ fluent overflow]→ ok→ ei+1

of some σ′ ∈ ΓSys’ due to the following reasons: the disjunction of the con-
ditions in CFmon for every monitored event of the system is true. Moreover,
the monitor behaviour serialises, without interruption (SYNCH), the updat-
ing events εi[v

′
εi] ∈ CfEvs for the k fluent expressions values. Finally, the

monitor ends with an ok event (including the case when fluent overflow

is triggered), and continues with ei+1 as the SYNCH process guarantee.

By applying the |A function to these sub-traces, we obtain that

σ = σ′|CFset

Lemma 2 Let σ′ ∈ ΓSys’ and ϕ a counting fluent expression, for all position i:

σ′, i |= (OBS ∧ flϕ)⇒ σ′, i |= ϕ

Lemma 2 expresses that, under bounded situations, the truth value of a
counting fluent expression is captured by the corresponding propositional fluent
generated over the monitored system.

10

Recall that OBS ≡ OK∧¬F overflow, where OK indicates if the monitor fin-
ished the updating process of the counting fluent values, and F overflow alerts
if a overflowed state has been reached. For states which are not observables, i.e.
OBS is false, the implication trivially holds.

Consider now some state at the position i that satisfies the OBS condition.
For i = 0 the formula trivially holds by the initialization definition of flϕ, i.e. it
is initialized with the evaluation of the expression instantiated with the initial
counting fluent values present in ϕ. Whether i > 0, to simplify the proof, let us
consider first the case of unary expressions, i.e. expressions such as cF l ∼ c. If
OBS∧flϕ holds, then there is a sequence of updating events of the form ϕ[v′cF l],
where the last value v = v′cF l belongs to the activating set of the propositional
fluent flϕ, i.e. v fulfil the formula v ∼ c.

By the monitor’s construction, these updating events correspond to the a
sequence of monitored events occurrences. Starting from the monitor process
with the NcF l value, and ignoring prefix sub-traces ending with a reset event
e ∈ RcF l (in which case the parameter value go backs to the value NcF l), there is
a final sub-trace which has the necessary monitored events e1, . . . , en ∈ Iϕ ∪Dϕ

before the triggering of ϕ[v]. As consequence of the construction of Cfmon and
SYNCH, NcF l + #ei ∈ Iϕ−#ej ∈ Dϕ = v which is the definition of the semantic
value of cF l and as consequence cF l ∼ c as desired.

For a binary expression (e.g., ϕ = cF li ∼ cF lj ± c), if OBS ∧ flϕ holds,
then there is a sequence of updating events that triggers the event ϕ[v], where
v = vi − vj is the difference between the corresponding values of the counting
fluents associated with ϕ, and v fulfil de formula v ∼ 0 ± c. By a similar
reasoning as for unary expression, we have a set of system events occurrences
ei1 , . . . , ein ∈ IcF li ∪ DcF li and ej1 , . . . , ejn ∈ IcF lj ∪ DcF lj such that vi =
NcF li + #e ∈ IcF li − #e ∈ DcF li and vj = NcF lj + #e ∈ IcF lj − #e ∈ DcF lj

which satisfies the meaning of ϕ.

References

[1] E. Clarke, O. Grumberg and D. Peled, Model Checking, MIT Press, 2000.

[2] V. Diekert and P. Gastin, First-order definable languages, Logic and Au-
tomata, pp. 261-306, 2008.

[3] D. Giannakopoulou and J. Magee, Fluent Model Checking for Event-based
Systems, in Proc. of ESEC/FSE’03, ACM, pp. 257-266, 2003.

[4] F. Laroussinie, A. Meyer and E. Petonnet, Counting LTL, in Proc. TIME
’10, IEEE, pp. 51-58, 2010.

[5] E. Letier, J. Kramer, J. Magee and S. Uchitel,Fluent Temporal Logic for
Discrete-Time Event-Based Models, in Proc. of ESEC/FSE’05, ACM, pp.
70-79, 2005.

[6] J. Magee and J. Kramer, Concurrency: State Models and Java Programs,
John Wiley & Sons, 1999.

11

